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0.1. Normal numbers.

Definition. A real number α ∈ (0, 1) is simply normal (to base 10), if
in the decimal expansion

α = 0.a1a2 . . . ,

each digit occurs with the same frequency (namely 1/10): For any digit
t ∈ {0, 1, . . . , , 9},

lim
N→∞

1

N
# {n ≤ N : an = t} =

1

10

We say that α is normal to base 10 if for every k ≥ 1, every string
t1 . . . tk of k digits tj ∈ {0, 1, . . . , 9} appears with the same frequency,
namely 1/10k:

lim
N→∞

1

N
# {n ≤ N : an+1 = t1, an+2 = t2, . . . , an+k = tk} =

1

10k
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We can naturally change base 10 to any other base b ≥ 2, with the
same definitions.

Exercise 1. Show that a rational number is not normal (to any base).

The natural questions are: Is there a normal number?

0.2. Un-natural examples.

• Champernowne’s number (1933, [1]): Concatenate all natural
numbers into a decimal expansion

0.1234567891011121314 . . .

• Copeland Erdős number (1946 [2], conjectured by Champer-
nowne): Concatenate all primes into a decimal expansion.

0.23571113172329 . . .

• Davenport and Erdős (1952 [3], conjectured by Copeland and
Erdős): Let f(x) be any polynomial in x, all of whose val-
ues for x = 1, 2, . . . are positive integers. Then the decimal
0.f(1)f(2)f(3) . . . , where f(n) is written in the scale of 10, is
normal (in base 10).

Open Problem 1. Find a single example of a “naturally occurring”
number which is normal (to some base). For instance, is the golden
ration ϕ = (1 +

√
5)/2 normal?

It is conjectured that any real algebraic number is normal to all
bases.

0.3. Normality and uniform distribution. Let X = {xn} ⊂ R/Z '
[0, 1) be a sequence of numbers on the unit circle. We say that X is
uniformly distributed (mod 1) if for every subinterval I ⊂ [0, 1), the
proportion of elements of X contained in I equals the length of I:

lim
N→∞

1

N
# {n ≤ N : xn ∈ I} = |I|.

Likewise, if we take a sequence xn of real numbers, we use the fractional
parts {x mod 1}.

Note that a uniformly distributed sequence X ⊂ [0, 1) is necessarily
dense. The converse is not true: A standard example is the sequence
of fractional parts {log n : n = 1, . . . }

Exercise 2. Show that the sequence of fractional parts {{log n} : n =
1, 2, . . . } is dense in [0, 1).
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As we shall later see, if α ∈ R\Q is irrational, then the sequence
{αn : n = 1, 2, . . . } is uniformly distributed mod 1.

The relation to our previous discussion of normal numbers lies in the
following observation:

Proposition 0.1. α is normal to base 10 (resp., base b) if and only if
the sequence {α10n : n = 1, 2, . . . } is uniformly distributed modulo 1
(resp. αbn).

Proof. It suffices to consider intervals I = [a, b) with endpoints be-
ing finite decimals, i.e. of the form a = 0.a1.....ar, in fact when we
only change the last digit (exercise: why?). For simplicity, take I =
[0.123, 0, 124). Now note that if α = 0.a1a2 . . . , then the fractional part
of 10nα = 0.an+1an+2an+3 . . . , so that

{10nα} ∈ I = [0.123, 0, 124) ⇔ an+1 = 1, an+2 = 2, an+3 = 3.

Thus the number of n ≤ N for which the fractional parts {α10n} ∈ I
is exactly equal to the number of occurrences of the string ”123” in
the first N + 3 digits of α. Normality of α means that this number
is asymptotically N/103. Noting that the length of our interval I is
1/103, we see that we get the number of n ≤ N such that {10nα} ∈ I
is asymptotically N |I|, which is what is required in the definition of
uniform distribution. �

This observation shifts the focus from normality to the general con-
text of uniform distribution of sequences. So far we have not proved
that any sequence is uniformly distributed. Before doing so, we develop
Weyl’s breakthrough method for establishing this.

0.4. Weyl’s criterion (1916).

Theorem 0.2. Let X = {xn : n = 1, 2, . . . } ⊂ R. Then X is uniformly
distributed modulo 1 if and only if for all integers k 6= 0,

lim
N→∞

1

N

N∑
n=1

e2πikxn = 0.

In what follows, we shall abbreviate

e(z) := e2πiz

Example: We shall show that for any irrational α, the fractional parts
of αn are u.d.: By Weyl’s criterion, it suffices to show cancellation in
the “Weyl sums”

∑N
n=1 e

2πikαn. But for this sequence, these are just
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geometric progressions, so as long as kα /∈ Z (which is guaranteed by
irrationality of α if k 6= 0), so that

N∑
n=1

e2πikαn =
e ((N + 1)kα)− e(kα)

1− e(kα)
.

Hence ∣∣∣∣∣ 1

N

N∑
n=1

e2πikαn

∣∣∣∣∣ ≤ 1

N

2

|1− e(kα)|
→ 0, as N →∞,

so that Weyl’s criterion is satisfied. �
Example: The sequence of fractional parts of log n is not uniformly

distributed mod 1 (earlier we saw that it is dense mod 1). To see this,
we need to see that Weyl’s criterion does not hold. We will show that

1

N

∑
n≤N

e(log n) 6→ 0

Indeed, we use summation by parts to evaluate the Weyl sum. Recall
that for a differentiable function f(t), and any sequence {an}, we denote
by

A(t) :=
∑
n≤t

an

the partial sums of the sequence, then the weighted sum
∑

n anf(n)
can be written as∑

1≤n≤x

anf(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt

and more generally, if z < x then∑
z<n≤x

anf(n) = A(x)f(x)− A(z)f(z)−
∫ x

z

A(t)f ′(t)dt

Exercise 3. Using summation by parts, show that∑
n≤x

log n = x log x− x+O(log x)

N∑
n=1

1

n
= logN + C −O(

1

N
)

for some constant C.
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We apply this with f(t) = e2πi log t = t2πi, and an = 1, so that
A(t) = btc to obtain

∑
1≤n≤N

e(log n) = bNcN2πi −
∫ N

1

btc2πit2πi−1dt

= N1+2πi − 2πi

∫ N

1

t2πidt+ 2πi

∫ N

1

t2πi−1{t}dt

= N1+2πi − 2πi
N1+2πi

1 + 2πi
+O

(∫ N

1

t−1dt

)
=
N1+2πi

1 + 2πi
+O (logN) ,

which is clearly not o(N).

0.5. Proof of Weyl’s criterion. The argument is all about approxi-
mating various functions by step functions and by trigonometric poly-
nomials. For a periodic function f , we ask whether the following holds

(*) lim
N→∞

1

N

∑
n≤N

f(xn) =

∫ 1

0

f(x)dx

Lemma 0.3. Let X ⊂ R/Z. The following are equivalent:

(1) The sequence X is uniformly distributed.
(2) (*) holds for all continuous f .
(3) (*) holds for all Riemann integrable f .

Proof. Clearly (3) implies (1). For the converse, note that (1) (uniform
distribution) implies that (*) holds for all step functions, that is lin-
ear combinations of the indicator functions of intervals. But for any
Riemann integrable function, by definition, given any ε > 0, there are
step functions s− ≤ f ≤ s+ with

∫ 1

0
(s+ − s−) < ε. Choose N(ε) > 0

so that for all N ≥ N(ε),

(0.1)

∣∣∣∣∣ 1

N

N∑
n=1

s+(xn)−
∫ 1

0

s+(x)dx

∣∣∣∣∣ < ε
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and then

1

N

N∑
n=1

f(xn)−
∫ 1

0

f(x)dx =
1

N

N∑
n=1

(f(xn)− s+(xn))

+
1

N

N∑
n=1

s+(xn)−
∫ 1

0

s+(x)dx

+

∫ 1

0

s+(x)dx−
∫ 1

0

f(x)dx

Now the first expression is non-positive, since f ≤ s+, so that the LHS
is bounded above by the sum of the last two expressions. By (0.1), the

second expression lies in (−ε, ε), and since
∫ 1

0
(s+ − s−) < ε, the third

expression is in [0, ε). Hence

1

N

N∑
n=1

f(xn)−
∫ 1

0

f(x)dx < 2ε.

Arguing with s+ replaced by s− will give

1

N

N∑
n=1

f(xn)−
∫ 1

0

f(x)dx > −2ε.

and hence ∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫ 1

0

f(x)dx

∣∣∣∣∣ < 2ε.

for all N ≥ N(ε). Hence (3) holds.
Since continuous functions are Riemann integrable, we have (3) ⇒

(2).
For the implication (2) ⇒ (1), argue similarly, approximating the

indicator function of an interval above and below by continuous func-
tions. �

Proof of Weyl’s criterion: Since the exponential functions ek(x) =
e(ks) are continuous, by the above Lemma uniform distribution implies
that (*) holds for them, that is one direction follows. We need to show
that assuming that (*) for f(x) = e(kx), for all k 6= 0 (k = 0 is
obvious), implies uniform distribution, and by the Lemma, it suffices
to show (*) holds for continuous functions.

Note that (*) for all e(kx) for all integer k implies (*) holds for all
trigonometric polynomials, by linearity. By the Weierstrass approxi-
mation theorem, given a continuous function f , for any ε > 0 there
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is a trigonometric polynomial T (x) so that ||f − T ||∞ < ε. One then
argues as in the Lemma that∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫ 1

0

f(x)dx

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

N

N∑
n=1

(
f(xn)− T (xn)

)∣∣∣∣∣
+
∣∣∣ 1

N

N∑
n=1

T (xn)−
∫ 1

0

T (x)dx
∣∣∣

+

∫ 1

0

∣∣∣T (x)− f(x)
∣∣∣dx

The first and third expressions are at most ε, since ||f −T ||∞ < ε, and
the second expression is at most ε for all N ≥ N(ε). Thus we have
uniform distribution. �

0.6. Polynomial sequences. Weyl’s criterion allows one to get a first
step up on a number of problems. As an example, we present one of
Weyl’s original breakthroughs, namely that the sequence αn2 is uni-
formly distributed mod 1 for α irrational. However, unlike the linear
case αn, this does not come for free, and needed some significant extra
ideas. We start with Dirichlet’s theorem on rational approximations.

Lemma 0.4. Let x ∈ R be a real number. Then for any integer Q ≥ 1,
there are integers a ∈ Z, q ≥ 1, with q ≤ Q so that∣∣∣∣x− a

q

∣∣∣∣ < 1

qQ

In particular for the fractional part {qx} we get 0 ≤ {qx} < 1/Q.
If x is irrational, then we must have q →∞ as Q→∞.

Proof. We consider the Q + 1 numbers {nx} ∈ [0, 1), 0 ≤ n ≤ Q. Di-
viding the unit interval [0, 1) into Q subintervals of length 1/Q, we use
Dirichlet’s box principle to deduce that at least one of these subintervals
contains two points of the sequence, that is there are 0 ≤ m 6= n ≤ Q
so that

0 ≤ {nx} − {mx} < 1

Q

Writing {mx} = mx−M , {nx} = nx−N with M,N ∈ Z we obtain

0 ≤ nx−N − (mx−M) = (n−m)x− (N −M) <
1

Q

Taking q = |n−m| ∈ [1, Q] and a = ±(N −M) we obtain

|qx− a| < 1

Q



8 ZEÉV RUDNICK

as claimed.
Now if x /∈ Q is irrational, then {qx} 6= 0 and hence we cannot have

0 ≤ {qx} < 1/Q for infinitely many Q’s. Hence q →∞ as Q→∞. �

Theorem 0.5. For irrational α, the sequence {αn2 : n = 1, 2 . . . } is
uniformly distributed modulo 1.

By Weyl’s criterion, it suffices to show that for any nonzero integer
k, the “Weyl sums”

S(N) :=
N∑
n=1

e(kαn2) = ok,α(N)

(the implied constants are allowed to depend on α and k).
We square out the sum

|S(N)|2 = N + 2<
∑

1≤m<n≤N

e(kα(n2 −m2))

Writing n = m+ h, with 1 ≤ m+ h ≤ N , so that

n2 −m2 = h(2m+ h) = h2 + 2hm,

we obtain∣∣∣ ∑
1≤m<n≤N

e(kα(n2 −m2))
∣∣∣ =

∣∣∣N−1∑
h=1

e(kαh2)
N−h∑
m=1

e(α · 2k · h ·m)
∣∣∣

≤
N−1∑
h=1

∣∣∣N−h∑
m=1

e(γ · h ·m)
∣∣∣

where we have set γ := 2kα, which is irrational if and only if α is
irrational.

Now we sum the geometric progression, which is the inner sum:

∣∣∣N−h∑
m=1

e(γ · h ·m)
∣∣∣ =


N − h, h · γ ∈ Z∣∣∣ e(hγ)−e(hγ(N−h+1))

1−e(hγ)

∣∣∣ ≤ 2
2| sin(πhγ)| , else

� min
(
N,

1

||hγ||

)
where ||x|| := dist(x,Z). Thus we obtain

|S(N)|2 � N +
N∑
h=1

min
(
N,

1

||hγ||

)
.

Hence it suffices to show that
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Proposition 0.6. For γ /∈ Q,

N∑
h=1

min
(
N,

1

||hγ||

)
= o(N2)

Proof. We use Dirichlet’s lemma to obtain coprime a, q, with 1 ≤ q ≤ N
so that

|γ − a

q
| < 1

qN
or γ =

a

q
+

θ

qN
, |θ| < 1.

Divide the range of summation [1, N ] into consecutive intervals of
length q, plus perhaps an extra leftover interval. So if (M − 1)q <
N ≤ Mq then writing h = qk + j, 0 ≤ k < M , j = 0, . . . , q − 1, we
have

||γh|| = ||ah
q

+
θh

qN
|| = ||aj

q
+ ak +

θh

qN
|| = ||aj

q
+
θ̃

q
||

where |θ̃| < 1. Thus

N∑
h=1

min
(
N,

1

||hγ||

)
≤M max

|θ̃|<1

q−1∑
j=0

min
(
N,

1

||aj
q

+ θ̃
q
||

)

� N

q
max
|θ̃|<1

q−1∑
i=0

min
(
N,

1

|| i
q

+ θ̃
q
||

)
where we have changed variables aj mod q → i mod q, as we may since
a is coprime to q, so that as we vary over all residues j mod q, the set
aj mod q varies over all residues i mod q (recall ||aj

q
+ z|| only depends

on aj mod q).
For at most one value of i mod q, we have

|| i
q

+
θ̃

q
|| < 1

2q

and for that value we replace the corresponding term in the sum by N .
For the remaining i’s, we have

|| i
q

+
θ̃

q
|| ≥ i

2q

Hence we find

max
|θ̃|<1

q−1∑
i=0

min
(
N,

1

|| i
q

+ θ̃
q
||

)
� N +

q∑
i=1

1

q/i
� N + q log q
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Therefore

N∑
h=1

min
(
N,

1

||hγ||

)
� N

q

(
N + q log q)� N2

q
+N logN

Recall that since γ is irrational, we have q →∞ as N →∞, and hence
the above is o(N2). �

An elaboration of the above argument gives

Theorem 0.7. Let P (x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 be a poly-
nomial of degree d ≥ 2, with at least one of the ceofficients ad, . . . , a1
irrational (the constant term a0 does not matter). Then the sequence
{P (n) : n = 1, 2, . . . } is uniformly distributed mod 1.

0.7. Metric Theory.

Theorem 0.8. Let {a(n)} be a sequence of distinct integers: a(n) 6=
a(m) if n 6= m. Then for almost all α ∈ R, the sequence {αa(n)} is
uniformly distributed mod 1.

Note that the proof does not provide a single example of such an α.
As an example, we may take a(n) = 10n, and find that almost all α

are normal to base 10. Likewise, given any integer b ≥ 2, almost all
α are normal to base b. Intersection this union of subsets having full
measure shows that in fact almost all α are normal to any case b.

Proof. By Weyl’s criterion, it suffices to show that for almost all α, and
any integer k 6= 0, the normalized Weyl sums

S∗k(α;N) :=
1

N

N∑
n=1

e(kαa(n))

tend to zero. In fact it suffices to show that given k 6= 0, this holds
for almost all α (apriori depending on k). Replacing a(n) by ka(n), it
suffices to take k = 1, and we write S∗(α;N) = S∗1(α;N). We may also
restrict to α ∈ [0, 1) by periodicity.

From now on we take N = M2, and first show that for almost all α,
S∗(α;M2) → 0. Now one way to show this is to show that for almost
all α, the series

∞∑
M=1

|S∗(α;M2)|2 <∞

converges, since this forces the individual terms of the series to tend to
zero.
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Next, note that by what we learnt in measure theory about the
Lebesgue integral, it suffices to show that∫ 1

0

(
∞∑

M=1

|S∗(α;M2)|2
)
dα <∞

since for a function to be integrable, a necessary condition is that it is
finite almost everywhere.

By Fatou’s Lemma,∫ 1

0

(
∞∑

M=1

|S∗(α;M2)|2
)
dα ≤

∞∑
M=1

∫ 1

0

|S∗(α;M2)|2dα

so it suffices to show that the sum of the integrals converges. But
squaring out the Weyl sum gives∫ 1

0

|S∗(α;M2)|2dα =
1

M4

M2∑
m=1

M2∑
n=1

∫ 1

0

e (α(a(m)− a(n))) dα

=
1

M4

M2∑
m=1

M2∑
n=1

δ (a(m), a(n))

since the a(n)’s are integers. Now (and only now!) we use the assump-
tion that a(n) are distinct, to deduce that only the diagonal terms
survive, giving ∫ 1

0

|S∗(α;M2)|2dα =
1

M4

M2∑
m=1

1 =
1

M2

and so we deduce that∫ 1

0

(
∞∑

M=1

|S∗(α;M2)|2
)
dα <∞

so that for almost all α,

S∗(α,M2)→ 0.

Finally, we move from M2 to general N : Given N , we can find M
so that M2 ≤ N < (M + 1)2, and then we claim that

S∗(α,N) = S∗(α,M2) +O(
1√
N

)

and hence will deduce that for almost all α, S(α,N)→ 0.
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Indeed (assuming N 6= M2),

S∗(α,N)−S∗(α,M2) =
1

N

N∑
n=M2+1

e(αa(n))−
(

1

M2
− 1

N

) M2∑
n=1

e(αa(n))

so that∣∣S∗(α,N)− S∗(α,M2)
∣∣ ≤ 1

N
(N −M2) +

(
1

M2
− 1

N

)
M2

on trivially bounding |e(x)| ≤ 1

≤ 2
N −M2

N
� 1√

N

as claimed. �

0.8. Quantitative aspects of uniform distribution: Discrep-
ancy. If a sequence X is uniformly distributed mod 1, it is in par-
ticular dense in the unit interval. This means that every subinterval
of fixed length contains at least one point of the sequence, in fact the
proportion of points falling into it is roughly the length of the interval.
The next question is: What about shrinking intervals? That is, we
ask that every interval of length at least 1/m(N) contains at least one
element from the first N elements of the sequence {{xn} : n ≤ N},
where m(N)→ 0 as N →∞.

Definition. The discrepancy of the sequence X is

D(N) = sup
I⊆[0,1)

∣∣∣ 1

N
#{n ≤ N : xn ∈ I} − |I|

∣∣∣
Clearly if D(N) → 0 then X is uniformly distributed; the converse

also holds.

Exercise 4. Show that 1/N ≤ D(N) ≤ 1.

Recall that Weyl’s criterion is that X is uniformly distributed if and
only if all the normalized Weyl sums

S∗(k,N) :=
1

N

∑
n≤N

e(kxn)

tend to zero (k 6= 0). What is important is that we can use Weyl sums
to estimate the discrepancy D(N).

Theorem 0.9 (Erdős-Turan). For any K ≥ 1 and N ≥ 1,

D(N) ≤ 1

K + 1
+ 3

K∑
k=1

1

k
|S∗(k,N)|.
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0.8.1. Example: The linear case xn = αn mod 1. We want to use the
Erdős-Turan inequality. We use the bound for the geometric series (for
irrational α)

|S∗(k,N)| = 1

N

∣∣∣ N∑
n=1

e(kαn)
∣∣∣� 1

N

1

||kα||

and so by the Erdős-Turan inequality,

D(N)� 1

K
+

K∑
k=1

1

k
|S∗(k,N)| � 1

K
+

1

N

K∑
k=1

1

k||kα||

so we need to estimate the sum
∑K

k=1
1

k||kα|| . Here the Diophantine type

of α plays a special role. We say that α is of bounded type, or badly
approximable if there is some constant c = c(α) > 0 so that

||qα|| > c

q
.

This is a measure zero condition, and is equivalent to the contin-
ued fraction expansion of α to have bounded partial quotients: α =
[a0; a1, a2, . . . ], with 1 ≤ ak ≤ M . The main example are quadratic
irrationalities:

Lemma 0.10. Let α =
√
D, D 6= � > 1 an integer which is not a

perfect square. Then for any integers p, q ≥ 1

|p
q
−
√
D| > c

q2
, c = 1/(3

√
D)

Proof. We may assume that |p/q −
√
D| < 1/10, otherwise there is

nothing to prove. Let f(x) = x2−D (which is the minimal polynomial

of
√
D). Then

|p
q
−
√
D| =

|f(p
q
)|

p
q

+
√
D
>
|f(p/q)|

3
√
D

since 0 < p/q +
√
D = 2

√
D + (p/q −

√
D) < 2

√
D + 1/10 < 3

√
D.

Moreover,

|f(p/q)| = |p
2 −Dq2|
q2

≥ 1

q2

because p2 −Dq2 is an integer, which is not zero because
√
D is irra-

tional if D 6= �, hence is at least 1 in absolute value. Altogether we
obtain

|p
q
−
√
D| > 1

3
√
D

1

q2

as claimed. �
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Note: The argument extends to give Liouville’s theorem, that for
a real algebraic number of degree d, we have |p/q − α| > c/qd with
c = c(α) effectively computable. Roth’s theorem improves that to
|p/q − α| > c/q2+ε, for all ε > 0, with c = c(α, ε) > 0 some constant
(not effective).

Open Problem 2. A real algebraic number of degree d ≥ 3 is not of
bounded type, equivalently the partial quotients in the continued fraction
expansion are not bounded.

Proposition 0.11. Suppose that α is irrational of bounded type. Then

D({αn}, N)� (logN)2

N
.

Note: This can be improved to O(logN/N).

Corollary 0.12. If α is of bounded type, then every interval of length
�α (logN)2/N contains an element of the form αn, n ≤ N .

Lemma 0.13. Suppose that α is irrational of bounded type. Then

A(t) :=
∑
k≤t

1

||kα||
� t log t.

and

G(K) :=
K∑
k=1

1

k||kα||
� (logK)2

Proof. The key is that if α is of bounded type, then the points ||kα|| ∈
(0, 1

2
] are well spaced in the sense that∣∣∣||mα|| − ||nα||∣∣∣� 1

j
, 1 ≤ m 6= n ≤ j

Indeed, mα = mα −M for M −mα for some integer M ; hence for a
suitable L ∈ Z,

||mα|| − ||nα|| = ±(m± n)α− L

so that if 1 ≤ m 6= n ≤ j then∣∣∣||mα|| − ||nα||∣∣∣ ≥ || |m± n|α || ≥ 1

(m+ n)
≥ 1

2j

as claimed.
Hence, an interval of length < 1/(2K) will contain at most one

element of the form ||kα||, 1 ≤ k ≤ K.
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We use this to bound the sum A(t) by dividing the range of summa-
tion into intervals of length δ = 1/(2t)

A(t) =

1/δ∑
j=1

∑
k≤t

||kα||∈(jδ,(j+1)δ]

1

||kα||

each interval contains at most one summand, and the summand is
bounded above by 1/jδ, so that

A(t) ≤
1/δ∑
j=1

1

jδ
� 1

δ
log

1

δ
� t log t.

To bound G(K), we use the bound on A(t) and get rid of the factor
1/k by using summation by parts:

Exercise 5. Suppose that α is irrational of bounded type, and set
||x|| = dist(x,Z). Let

A(t) :=
∑
k≤t

1

||kα||
, G(K) :=

K∑
k=1

1

k||kα||

We saw that A(t)� t log t. Show that

G(K)� (logK)2.

�

We can now bound the discrepancy:

D(N)� 1

K
+

K∑
k=1

1

k
|S∗(k,N)| � 1

K
+

1

N

K∑
k=1

1

k||kα||
� 1

K
+

(logK)2

N

Taking K = N gives D(N)� (logN)2/N .
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